Single-file diffusion of atomic and colloidal systems: asymptotic laws.

نویسنده

  • Markus Kollmann
چکیده

We present a general derivation of the non-Fickian behavior for the self-diffusion of identically interacting particle systems with excluded mutual passage. We show that the conditional probability distribution of finding a particle at position x(t) after time t, when the particle was located at x(0) at t=0, follows a Gaussian distribution in the long-time limit, with variance 2W(t) approximately t(1/2) for overdamped systems and with variance 2W(t) approximately t for classical systems. The asymptotic behavior of the mean-squared displacement, W(t), is shown to be independent of the nature of interactions for homogeneous systems in the fluid state. Moreover, the long-time behavior of self-diffusion is determined by short-time and large-scale collective density fluctuations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limits of size scalability of diffusion and growth: Atoms versus molecules versus colloids.

Understanding fundamental growth processes is key to the control of nonequilibrium structure formation for a wide range of materials on all length scales, from atomic to molecular and even colloidal systems. While atomic systems are relatively well studied, molecular and colloidal growth are currently moving more into the focus. This poses the question to what extent growth laws are size scalab...

متن کامل

Non-monotonic crossover from single-file to regular diffusion in micro-channels

The diffusion behavior of interacting particles determines the behavior of a large number of systems ranging from pedestrians crossing a road to ions passing through channels in living cells. Here we present a system in which the nature of the diffusion process varies with changes in the external conditions. We find this special behavior in a colloidal model system, consisting of micron sized p...

متن کامل

Single-file diffusion of colloids in one-dimensional channels

Single-file diffusion, prevalent in many processes, refers to the restricted motion of interacting particles in narrow micropores with the mutual passage excluded. A single-filing system was developed by confining colloidal spheres in one-dimensional circular channels of micrometer scale. Optical video microscopy study shows evidence that the particle self-diffusion is non-Fickian for long peri...

متن کامل

Direct measurements of island growth and step-edge barriers in colloidal epitaxy.

Epitaxial growth, a bottom-up self-assembly process for creating surface nano- and microstructures, has been extensively studied in the context of atoms. This process, however, is also a promising route to self-assembly of nanometer- and micrometer-scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable...

متن کامل

Theory of collective diffusion in two-dimensional colloidal suspensions

We consider many-particle diffusion in 2D colloidal suspensions with hydrodynamic interactions within a mode-coupling approach. We focus on the behaviour of the effective scaled collective diffusion coefficient DC(ρ)/D0 as a function of the density of the colloids ρ, where D0 is the single-particle diffusion coefficient. We find that DC(ρ) is strongly coupled to hydrodynamical conservation laws...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 90 18  شماره 

صفحات  -

تاریخ انتشار 2003